Komodo (комодо) 13.3, 10
Содержание:
What to expect from the Syzygy tablebases?
If the engine is searching a position that is not in the tablebases (e.g.
a position with 8 pieces), it will access the tablebases during the search.
If the engine reports a very large score (typically 153.xx), this means
it has found a winning line into a tablebase position.
If the engine is given a position to search that is in the tablebases, it
will use the tablebases at the beginning of the search to preselect all
good moves, i.e. all moves that preserve the win or preserve the draw while
taking into account the 50-move rule.
It will then perform a search only on those moves. The engine will not move
immediately, unless there is only a single good move. The engine likely
will not report a mate score, even if the position is known to be won.
It is therefore clear that this behaviour is not identical to what one might
be used to with Nalimov tablebases. There are technical reasons for this
difference, the main technical reason being that Nalimov tablebases use the
DTM metric (distance-to-mate), while the Syzygy tablebases use a variation of the
DTZ metric (distance-to-zero, zero meaning any move that resets the 50-move
counter). This special metric is one of the reasons that the Syzygy tablebases are
more compact than Nalimov tablebases, while still storing all information
needed for optimal play and in addition being able to take into account
the 50-move rule.
Training Guide
Generating Training Data
Use the «no-nnue.nnue-gen-sfen-from-original-eval» binary. The given example is generation in its simplest form. There are more commands.
This will save a file named «generated_kifu.bin» in the same folder as the binary. Once generation is done, rename the file to something like «1billiondepth12.bin» to remember the depth and quantity of the positions and move it to a folder named «trainingdata» in the same directory as the binaries.
Generation Parameters
- Depth is the searched depth per move, or how far the engine looks forward. This value is an integer.
- Loop is the amount of positions generated. This value is also an integer
Generating Validation Data
The process is the same as the generation of training data, except for the fact that you need to set loop to 1 million, because you don’t need a lot of validation data. The depth should be the same as before or slightly higher than the depth of the training data. After generation rename the validation data file to val.bin and drop it in a folder named «validationdata» in the same directory to make it easier.
Training a Completely New Network
Use the «avx2.halfkp_256x2-32-32.nnue-learn.2020-07-11» binary. Create an empty folder named «evalsave» in the same directory as the binaries.
Nets get saved in the «evalsave» folder.
Training Parameters
- eta is the learning rate
- lambda is the amount of weight it puts to eval of learning data vs win/draw/loss results. 1 puts all weight on eval, lambda 0 puts all weight on WDL results.
Reinforcement Learning
If you would like to do some reinforcement learning on your original network, you must first generate training data using the learn binaries. Make sure that your previously trained network is in the eval folder. Use the commands specified above. Make sure is set to false so that the data generated is using the neural net’s eval by typing the command before typing the command. You should aim to generate less positions than the first run, around 1/10 of the number of positions generated in the first run. The depth should be higher as well. You should also do the same for validation data, with the depth being higher than the last run.
After you have generated the training data, you must move it into your training data folder and delete the older data so that the binary does not accidentally train on the same data again. Do the same for the validation data and name it to val-1.bin to make it less confusing. Make sure the evalsave folder is empty. Then, using the same binary, type in the training commands shown above. Do NOT set to true, it must be false or you will get a completely new network, instead of a network trained with reinforcement learning. You should also set eval_save_interval to a number that is lower than the amount of positions in your training data, perhaps also 1/10 of the original value. The validation file should be set to the new validation data, not the old data.
After training is finished, your new net should be located in the «final» folder under the «evalsave» directory. You should test this new network against the older network to see if there are any improvements.
Как подключить движок для анализа в ChessBase 15?
Рассмотрим подключение движка к ChessBase 15 на примере Stockfish 10
1. Сначала потребуется скачать сам движок. Сделать это можно с официального сайта Stockfish, который легко найти в любой поисковой системе
Обратите внимание, что вам потребуется версия Stockfish 10 для Windows
2. После нажатия кнопки Download архив с движком Stockfish 10 будет скачан на ваш компьютер. Далее разархивируйте его в удобное для вас место. Примерно, как показано на картинке ниже.
3. Теперь движок надо подключить. Для этого в ChessBase 15 откройте любую партию и нажмите на кнопку Подключить UCI движок, как показано на картинке ниже.
5. Откроется окно с настройками Stockfish 10. Здесь можно нажать ОК и перейти дальше, а настройки изменить позже.
6. В следующем окне нажмите ОК для сохранения настроек.
7. Далее нажмите в меню Управление движками для окончательных настроек и включения движка.
8. Нажмите в меню Загрузить движок, чтобы включить нужный движок и установить его главным.
9. В списке движков выберите Stockfish 10 и нажмите кнопку Подробнее.
10. Выберите объём памяти, который будет выделяться для движка и установите отметку у пункта Стандартный движок. Это позволит в дальнейшем активировать Stockfish 10 нажатием одной кнопки.
11. Нажмите кнопку ОК и движок будет запущен.
12. В дальнейшем вы сможете запускать его нажатием в меню пункта Главный движок. Эта кнопка запускает и останавливает движок, открывая или закрывая окно движка.
13. Окно с движком выглядит примерно так, как указано на картинке ниже. Здесь можно нажать Плюс или Минус для добавления или уменьшения количества вариантов, а также задать настройки для процессора, и остановить движок кнопкой, оставив окно движка открытым.
14. Если нажать на большую синюю стрелку из прошлого шага, то откроется окно облачного движка. Для этого может потребоваться подписка на Премиальный аккаунт ChessBase. Облачные движки не зависят от мощности вашего компьютера, и предлагают более мощные вычислительные возможности. Они помогут быстрее и глубже считать варианты и делать анализы в позициях.
15. Если у вас облачные базы не запускаются, то нажмите на иконку облако в правой части картинки из шага 13. Откроется окно с выбором облачных движков. Здесь вы можете активировать тот движок, который вам больше нравится.
16. В подробной информации о движке вы можете установить свою ставку за использование движка.
Источник
Terms of use
Stockfish is free, and distributed under the GNU General Public License version 3
(GPL v3). Essentially, this means you are free to do almost exactly
what you want with the program, including distributing it among your
friends, making it available for download from your website, selling
it (either by itself or as part of some bigger software package), or
using it as the starting point for a software project of your own.
The only real limitation is that whenever you distribute Stockfish in
some way, you MUST always include the full source code, or a pointer
to where the source code can be found, to generate the exact binary
you are distributing. If you make any changes to the source code,
these changes must also be made available under the GPL.
For full details, read the copy of the GPL v3 found in the file named
Copying.txt.
StockFish
Описание:Hidden text. Click here
This is Stockfish 1.1, an UCI engine derived from Glarung 2.1 This new version fixes few bugs and better tweaks some features. Now that I have gained a little bit more experience with testing, that is by far more difficult and tricky then coding, I think I have done a better job of picking the good out of the bad or neutral. This version, poorely compiled by me, beats Stockfish 1.01 JA, something that normally doesn’t happen. But perhaps the biggest reason that has pushed me to release is a new, disabled, feature. It is a new pruning technique that I would deem as interesting, but because is still experimental is disabled by default. I will do a post in programming stuff section of this forum dedicated to this feature that I have called «Null capture pruning». Please Jim, could you be so kind to properly compile this new toy? Thanks in advance. Known issues — As the original Glaurung 2.1, this engine is endian sensitive. Please read the README if you have a PowerPC Mac and you want to compile yourself. — On 32 bit systems code must be compiled with -fno-strict-aliasing option, both under gcc and Intel C++ compiler, to avoid random crashes due to a pop_1st_bit() optimization. MSVC does not seem to have this problem. Special thanks to Tord Romstad for his beautiful engine. It is very, very difficult to find a parameter that needs tuning. It seems everything has been througly tested and optmized. It’s a wonderful base to start off. If this engine, just few months of hacking, will demonstarte stronger then Glaurung it is mostly because of the very high quality of the original one. Thanks Marco |
Hidden text. Click here
StockFish 1.01 JA 32+64bit http://depositfiles.com/files/jwg0ilb9x StockFish 1.1 JA 32+64bit http://depositfiles.com/files/6tfcay4jg StockFish 1.1 x64 Mendoza (reuploaded 22.12.2008) http://file023.mylivepage.com/chunk23/467162/1402/stockfish_11_x64_dm.7z StockFish 1.2 JA 32+64bit (uploaded 30.12.2008) http://www.mediafire.com/?5z2iyoznijm StockFish 1.3 compiled by bankuss StockFish 1.3 JA compiles StockFish 1.3.1 JA StockFish 1.0-1.3.1 все версии одним архивом. http://www.mediafire.com/download.php?zdd5mm0n4mg StockFish 1.4 JA NEW! Stockfish 1.5 64 bit bankuss compill http://ifolder.ru/14320365 Stockfish 1.5 32 bit bankuss compill http://ifolder.ru/14321060 Stockfish 1.5 JA compill http://www.mediafire.com/?fcz0jetm3l3 Зеркало http://rapidshare.de/files/48465409/Stockfish_1.5_JA.zip.html Stockfish 1.5.1 64 bit bankuss compil http://ifolder.ru/14416096 faster Stockfish 1.5.1 32+64bit JA Fast 13.10.2009 http://www.mediafire.com/?tnggmdjmmzg HOTFISH Stockfish 1.6 32+64bit JA 23.12.2009 http://www.mediafire.com/?ij3oonzkmzh http://rapidshare.com/files/325322806/stockfish-16-ja.rar.html http://depositfiles.com/files/jpel1pcnz http://rapidshare.de/files/48887312/stockfish-16-ja.rar.html Stockfish 1.6.2 32+64 bit JA 31.12.2009 http://www.mediafire.com/?koinmvkm1mh Нет изменений для Windows версии Движок неимоверно усилился! По предварительным прикидкам +80-100 ELO! NEW_HOT_FISH Stockfish 1.6s 32+64bit Dan Corbit 29.12.2009 http://cap.connx.com/chess-engines/new-approach/Stockfish.exe.bz2 64BIT http://cap.connx.com/chess-engines/new-approach/Stockfish32.exe.bz2 32BIT Зеркала на версии Дана Корбита которые он выложил на своём сайте 29.12.2009 Stockfish_16s_64_DC.bz2 http://www.zshare.net/download/70547234adfe0138/ Stockfish_16s_32_DC.bz2 http://www.zshare.net/download/70547281fbd539eb/ Stockfish_16s_x64_ja.rar http://www.zshare.net/download/705473276d1695a1/ Stockfish 1.6.2s 64 bit only Dann Corbit 31.12.2009 http://cap.connx.com/chess-engines/new-approach/Stockfish-162s-64dc.exe.bz2 Stockfish 1.6.3JA bit 02.02.2010 http://www.mediafire.com/?ywtum2tmwi5 http://www.speedyshare.com/files/20720147/stockfish-163-ja.zip http://depositfiles.com/files/82pfvf5qh http://www.filebox.com/e5u9jij5d9wa |
Функции
Stockfish может использовать до 512 потоков ЦП в многопроцессорных системах. Максимальный размер его таблицы транспонирования — 32 ТБ. Stockfish реализует расширенный альфа-бета-поиск и использует битовые доски . По сравнению с другими движками, он отличается большой глубиной поиска, отчасти из-за более агрессивной обрезки и позднего сокращения перемещений . По состоянию на сентябрь 2021 года Stockfish 14 (4-х ниточный) достигает рейтинга Эло 3550.+22 −22 на тесте CCRL 40/15.
Stockfish поддерживает Chess960 , что является одной из функций, унаследованных от Glaurung.
Поддержка Syzygy tablebase , ранее доступная в форке, поддерживаемом Рональдом де Маном, была интегрирована в Stockfish в 2014 году. В 2018 году была добавлена поддержка Syzygy для 7 человек, вскоре после того, как она стала доступной.
Платформы
Релизные и разрабатываемые версии доступны как исходный код C ++ и как предварительно скомпилированные версии для Microsoft Windows , macOS , 32-разрядной / 64-разрядной версии Linux и Android .
Stockfish был очень популярным движком на различных платформах. На настольных компьютерах это шахматный движок по умолчанию, связанный с интерфейсными программами интернет-шахматного клуба BlitzIn и Dasher. На мобильных устройствах он поставляется в комплекте с приложением Stockfish, SmallFish и Droidfish. Другие графические пользовательские интерфейсы, совместимые со Stockfish, включают Fritz , Arena, Stockfish для Mac и PyChess . По состоянию на март 2014 года Stockfish — это шахматный движок, используемый Lichess , популярным шахматным онлайн-сайтом.
Stockfish можно скомпилировать в WebAssembly или JavaScript , что позволит запускать его в браузере. И Chess.com, и Lichess предоставляют Stockfish в этой форме в дополнение к серверной программе.
Compiling Stockfish yourself from the sources
Stockfish has support for 32 or 64-bit CPUs, certain hardware
instructions, big-endian machines such as Power PC, and other platforms.
On Unix-like systems, it should be easy to compile Stockfish
directly from the source code with the included Makefile in the folder
. In general it is recommended to run to see a list of make
targets with corresponding descriptions.
When not using the Makefile to compile (for instance, with Microsoft MSVC) you
need to manually set/unset some switches in the compiler command line; see
file types.h for a quick reference.
When reporting an issue or a bug, please tell us which Stockfish version
and which compiler you used to create your executable. This information
can be found by typing the following command in a console:
Stockfish
Шахматный движок Stockfish – один из сильнейших в мире, наряду с Komodo и Houdini. В данной статье мы представим вам историю его развития, текущий рейтинг и подскажем, где его можно бесплатно скачать.
В переводе Stockfish – вяленая рыба. Первая версия программы вышла в 2008 году. Главные разработчики: Торд Ромстад (Tord Romstad) – Норвегия, Марко Костальба (Marco Costalba) – Италия, Йоона Кииски (Joona Kiiski) – Финляндия и Гарри Линскотт (Garry Linscott) – Канада. За свою десятилетнюю историю на январь 2018 года в разработке приняло участие 136 человек.
Программа написана на С++ и адаптирована под все современные операционные системы.
Стиль игры шахматного движка – универсальный, с тактическим уклоном.
Работа Stockfish, как и большинства современных движков, основана на использовании UCI-протокола, обеспечивающего взаимодействие движка с их графическим интерфейсом. Это означает, что для того, чтобы воспользоваться движком, потребуется графический интерфейс пользователя GUI или проще говоря, оболочка. Такой оболочкой могут послужить бесплатные графические интерфейсы Arena Chess GUI, GUI SCID, GUI Winboard или платные ChessBase Reader, Fritz Chess.
Противостояние Stockfish с Komodo и Houdini
Май 2014 – Стокфиш стал чемпионом TCEC (Сезон 6, 2014), неофициального мирового шахматного чемпионата среди движков, обыграв в суперфинале Комодо со счетом 35,5-28,5.
Декабрь 2014 – Стокфиш расстался с чемпионством TCEC (Сезон 7, 2014), проиграв в суперфинале матч-реванш Комодо со счетом 30,5-33,5.
Ноябрь 2015 – Стокфиш со счетом 46,5-53,5 снова проиграл Комодо в суперфинале TCEC (Сезон 8, 2015).
Декабрь 2016 – в суперфинале TCEC (Сезон 9, 2016) Стокфиш обыграл Гудини со счетом 54,5-45,5.
Ноябрь 2017 – за весь турнир TCEC (Сезон 10, 2017) Стокфиш не потерпел ни одного поражения, но не попал в суперфинал, пропустив туда Комодо и Гудини и заняв 3-е место.
Рейтинг Stockfish на 2020 год
Последние годы Стокфиш неизменно занимает лидирующие позиции в различных рейтинг-листах. На 30 апреля 2020 года в наиболее авторитетном рейтинг-листе шахматных движков CCRL 40/40 Стокфиш располагается на первом месте:
Stockfish
Отличительной особенностью Stockfish является его открытый исходный код и политика распространения – движок доступен бесплатно любому пользователю, желающему его скачать. Сделать это можно прямо на официальном сайте разработчика.
Доступен на операционных системах: Windows, Mac OS X, Linux, iOS, Android.
Текущая версия: Stockfish 11 (30 апреля 2020 года).
Также, помимо скомпилированных финальных версий для различных ОС, разработчики данного движка предлагают доступ к исходному коду.
Видео с комментариями партии Stockfish – Komodo TCEC Season 10 – Stage 2
Источник
Client-side analysis
Securely running programs like Stockfish in your browser requires them to be ported to JavaScript and/or WebAssembly (WASM). Previously this would disproportionately slow down NNUE. The slowdown has been fixed thanks to a recent contribution, so we can now provide Stockfish 13 NNUE for modern browsers.
Note that NNUE is most likely crunching fewer nodes per second than Stockfish with classical evaluation, but it is stronger nonetheless.
The implementation uses WASM SIMD, which allows efficiently applying the same CPU instruction to multiple pieces of data, speeding up the evaluation of the neural network.
When we last reported on the status of NNUE in WASM , the prototype was letting Emscripten choose the instructions based on the x86-targeted code, and failing to achieve good results. Now the proper WASM SIMD instructions are picked by hand using compiler intrinsics.
Computing a dot product with WASM SIMD intrinsics
Using NNUE will require a download of about 10 MB (20 MB uncompressed) for the neural network file. We will refrain from using NNUE, if your browser communicates that your device is in save data mode.
Update 6th Mar: There is now a «Use NNUE» toggle in the engine settings, that can override save data mode.
Using in Chromium, Chrome (except on iOS), and Edge
Requires version 88. WASM SIMD should work out of the box, because Lichess is participating in an Origin Trial for chrome://flags/#enable-webassembly-simd.
Update 23th Feb: Some Android users have reported that updating to Chrome 89 Beta was required.
Firefox
Firefox users will need more patience. If you’re feeling adventurous, you can enable javascript.options.wasm_simd in about:config. We have tested this with Firefox 85, but note that Firefox does not guarantee stability or security when tinkering with these flags.
Other browsers
Other browsers do not yet support WASM SIMD and will fall back to other Stockfish builds. We do not plan to update the fallbacks, so the gap in strength will grow as Stockfish progresses. This applies also to classical evaluation in newer Stockfish versions, since NNUE-specific search optimizations can be detrimental to classical evaluation strength. Here is the definitive list of available builds on Lichess, best to worst.
Update 23th Feb: Downgraded HCE build from Stockfish 12 to the optimal branching point for handcrafted evaluation (SF_classical). Later NNUE-specific search optimizations would lose Elo when not using NNUE.
Tag | Source | Stockfish version | Tech |
---|---|---|---|
NNUE | hi-ogawa/Stockfish | 13+ | Multi-threaded WASM. Uses SIMD. Strongest. |
HCE | niklasf/stockfish.wasm | 11+ (SF_classical) | Multi-threaded WASM, but using the classical handcrafted evaluation function. A multi-variant build is also used for chess variants. |
WASM | niklasf/stockfish.js | 10+ | Slower-single threaded WASM fallback. |
ASMJS | niklasf/stockfish.js | 10+ | Extremely slow pure JavaScript fallback. |
Large Pages
Stockfish supports large pages on Linux and Windows. Large pages make
the hash access more efficient, improving the engine speed, especially
on large hash sizes. Typical increases are 5..10% in terms of nodes per
second, but speed increases up to 30% have been measured. The support is
automatic. Stockfish attempts to use large pages when available and
will fall back to regular memory allocation when this is not the case.
Support on Linux
Large page support on Linux is obtained by the Linux kernel
transparent huge pages functionality. Typically, transparent huge pages
are already enabled, and no configuration is needed.
ТОП-50 движков
№ | Движок | ЭЛО | Игры | Баллы | Победы % | Ничьи % | Автор |
---|---|---|---|---|---|---|---|
1 | Stockfish 10 | 3551 | 27653 | 86.76 | 74.49 | 24.50 | Romstad, Costalba, Kiiski, Linscott |
2 | Houdini 6.02 | 3465 | 16240 | 80.81 | 64.08 | 33.40 | Robert Houdart |
3 | Komodo 12.3 | 3396 | 40000 | 73.93 | 56.79 | 34.30 | Dailey, Kaufman,Lefler |
4 | Fire 7.1 | 3354 | 30075 | 69.41 | 48.65 | 41.50 | Norman Schmidt |
5 | Xiphos 0.5 | 3319 | 19700 | 66.66 | 46.95 | 39.40 | Milos Tatarevic |
6 | Ethereal 11.25 | 3312 | 24470 | 65.33 | 44.07 | 42.50 | Andrew Grant |
7 | Laser 1.7 | 3274 | 22499 | 61.94 | 41.82 | 40.20 | Jeffrey An, Michael An |
8 | Shredder 13 | 3271 | 40771 | 63.93 | 42.05 | 43.80 | Stefan Meyer-Kahlen |
9 | Booot 6.3.1 | 3251 | 17406 | 53.43 | 27.02 | 52.80 | Alex Morozov |
10 | Andscacs 0.95 | 3239 | 25722 | 58.23 | 37.85 | 40.80 | Daniel Jose Queralto |
11 | Fizbo 2.0 | 3233 | 33983 | 56.74 | 37.79 | 37.90 | Youri Matiounine |
12 | Gull 3 | 3194 | 35168 | 58.29 | 37.03 | 42.50 | Vadim Demichev |
13 | Schooner 2.0.34 | 3169 | 20336 | 50.21 | 30.56 | 39.30 | Dennis Sceviour |
14 | Fritz 16 | 3159 | 21943 | 52.16 | 31.90 | 40.50 | Chessbase |
15 | Equinox 3.30 | 3152 | 27196 | 54.86 | 33.39 | 42.90 | Colli, Rocchi |
16 | Chiron 4 | 3150 | 27433 | 51.62 | 29.90 | 43.40 | Ubaldo Andrea Farina |
17 | Critter 1.6a | 3145 | 32304 | 53.61 | 32.41 | 42.40 | Richard Vida |
18 | Rofchade 2.0 | 3132 | 21250 | 47.47 | 27.60 | 39.70 | Ronald Friedrich |
19 | Nirvana 2.4 | 3117 | 25259 | 49.34 | 28.89 | 40.90 | Thomas Kolarik |
20 | Pedone 1.9 | 3108 | 18902 | 45.14 | 26.15 | 38.00 | Fabio Gobbato |
21 | Texel 1.07 | 3098 | 23670 | 47.34 | 29.07 | 36.60 | Peter Osterlund |
22 | Hannibal 1.7 | 3094 | 27263 | 46.92 | 26.74 | 40.40 | Sam Hamilton, Edsel Apostol |
23 | Nemorino 5.00 | 3093 | 20484 | 45.13 | 27.39 | 35.50 | Christian Gunther |
24 | Senpai 2.0 | 3074 | 22396 | 44.15 | 25.30 | 37.70 | Fabien Letouzey |
25 | Protector 1.9.0 | 3062 | 25684 | 45.86 | 25.95 | 39.80 | Raimund Heid |
26 | iCE 3.0 | 3058 | 21805 | 46.82 | 28.75 | 36.10 | Thomas Petzke |
27 | Vajolet 2.2.6 | 3058 | 15110 | 42.40 | 22.90 | 39.00 | Marco Belli |
28 | Chess22k 1.12 | 3048 | 16377 | 38.13 | 20.19 | 35.90 | Sander Maassen vd Brink |
29 | Arasan 21.3 | 3043 | 2700 | 33.91 | 18.56 | 30.70 | Jon Dart |
30 | Wasp 3.50 | 3030 | 20812 | 39.01 | 21.12 | 35.80 | John Stanback |
31 | Smarthink 1.98 | 3030 | 16979 | 42.61 | 28.40 | 28.40 | Sergei Markoff |
32 | SCTR 1.1f | 3000 | 4990 | 36.44 | 19.58 | 33.70 | Can Catin, Dogac Eidenk |
33 | Naum 4.6 | 3000 | 25742 | 39.35 | 21.53 | 35.60 | Aleksandar Naumov |
34 | Demolito 2018-10-29 | 2980 | 17426 | 35.54 | 20.34 | 30.40 | Lucas Braesch |
35 | ChessBrainVB 3.70 | 2980 | 2113 | 51.16 | 32.23 | 37.90 | Roger Zuehlsdorf |
36 | Pirarucu 2.9.5 | 2979 | 12248 | 38.33 | 22.14 | 32.40 | Raoni Campos |
37 | Rodent III 0.273 | 2949 | 12901 | 35.83 | 19.89 | 31.90 | Pablo Vazquez, Pawel Koziol |
38 | Deuterium 2019.1.36.50 | 2947 | 16266 | 31.24 | 15.90 | 30.70 | Ferdinand Mosca |
39 | HIARCS 14 | 2940 | 19029 | 36.52 | 20.69 | 31.70 | Mark Uniacke |
40 | Bobcat 8.0 | 2929 | 16544 | 32.41 | 16.95 | 30.90 | Gunnar Harms |
41 | Hakkapeliitta 3.0 | 2928 | 14833 | 34.14 | 21.15 | 26.00 | Mikko Aarnos |
42 | Alfil 15.8 | 2926 | 777 | 45.37 | 25.10 | 40.50 | Enrique Sanchez Acosta |
43 | Amoeba 2.8 | 2905 | 13761 | 31.57 | 16.74 | 29.70 | Richard Delorme |
44 | Crafty 25.2 | 2894 | 14925 | 29.65 | 16.42 | 26.50 | Bob Hyatt |
45 | Dirty Cucumber | 2892 | 2134 | 43.09 | 25.68 | 34.80 | Kannan, Valverde, Bluemers |
46 | Cheng 4.39 | 2891 | 17575 | 30.77 | 16.12 | 29.30 | Martin Sedlak |
47 | Spark 1.0 | 2884 | 18551 | 31.44 | 16.28 | 30.30 | Allard Siemelink |
48 | Sjeng 2010 | 2880 | 17481 | 30.08 | 16.08 | 28.00 | Gian-Carlo Pascutto |
49 | Spike 1.4 | 2868 | 19773 | 29.50 | 15.27 | 28.50 | Volker Bohm, Ralf Schafer |
50 | Atlas 3.91 | 2862 | 12107 | 25.58 | 13.70 | 23.70 | Andres Manzanares Campillo |